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How slowing senescence translates into longer life
expectancy
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Mortality decline has historically been largely a result of reductions in the level of mortality at all ages. A

number of leading researchers on ageing, however, suggest that the next revolution of longevity increase

will be the result of slowing down the rate of ageing. In this paper, we show mathematically how varying the

pace of senescence influences life expectancy. We provide a formula that holds for any baseline hazard

function. Our result is analogous to Keyfitz’s ‘entropy’ relationship for changing the level of mortality.

Interestingly, the influence of the shape of the baseline schedule on the effect of senescence changes is the

complement of that found for level changes. We also provide a generalized formulation that mixes level and

slope effects. We illustrate the applicability of these models using recent mortality decline in Japan and the

problem of period to cohort translation.

Keywords: mortality; lifetable; ageing; senescence; mathematical demography; entropy; semi-parametric

survival models

[Submitted May 2010; Final version accepted August 2011]

It is a curious thing that there is no word in the
English language that stands for the mere increase of
years: that is, for ageing silenced of its overtones of
increasing deterioration and decay. . . . We obviously
need a word for mere ageing, and I propose to use
ageing itself for just that purpose. Ageing hereafter
stands for mere ageing, and has no other innuendo. I
shall use the word senescence to mean ageing
accompanied by that decline of bodily faculties and
sensibilities and energies which ageing colloquially
entails. (P. B. Medawar 1957, p. 46)

1. Introduction

Recently, there have been a number of calls for

tackling the problem of ageing head-on by reducing

the rate at which people get old. In one prominent

example, published in the British Medical Journal,

researchers on ageing argue for medical research to

turn away from the disease-specific approach and

instead focus on slowing the ageing process: ‘The

most efficient approach to combating disease and

disability is to pursue the means to modify the key

risk factor that underlies them all*ageing itself’

(Butler et al. 2008). Some observers, such as de Grey

and Rae (2007) in Ending Aging, are optimistic

about the possibility of dramatically slowing the

ageing process in the near future.
In this paper, we explore what would happen to

life expectancy if senescence were slowed by redu-

cing the pace at which mortality rates rise with age.

We establish formally how large the pay-off to such a

breakthrough would be. Our aim in this study was to

provide new formal relationships between different

kinds of stylized mortality decline and in particular

to gain insight into why slowing the rate of ageing

could provide dramatic improvements in average

longevity. Our results complement the classic work

of Keyfitz (1977) on the effect of changing the level

of mortality on life expectancy, adding slope changes

and combined slope-and-level changes to the demo-

grapher’s formal toolkit.
Among a variety of meanings, senescence has

been defined as the increase of mortality risks that

accompany the weakening of an organism with age

(Medawar 1957; Finch 1990; Partridge 2010). Thus,

one way to think about slowing senescence is as a

reduction in the speed with which the risk of death

increases with age. In the Gompertz case, when

hazards are exponential, m(a)!aeba, slowing senes-

cence is equivalent to reducing b. More generally,
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for any pattern of increasing hazards, a slowdown in

senescence can be modelled by letting the hazard at

age a be equal to the hazard observed in a baseline

schedule at age ua. For example, if u!1/2, then an

individual with slowed senescence is exposed at age

60 to the hazard observed in the baseline schedule at

age 30, at age 80 to the original hazard at age 40, and

so on. Although the mathematics of what follows

applies to any baseline hazard, regardless of whether

hazards increase or fall with age, the interpretation

of u depends on the baseline schedule. When hazards

are rising, then u!1/2 slows senescence. If hazards

are falling, u!1/2 increases the amount of time it

takes for hazards to fall. Thus, the model would

delay ‘maturity’ or slow ‘growth’ (Baudisch 2008).
Increases in longevity that come from what we call

‘senescence-slowing’ can be contrasted with in-

creases that come from declines in the level of

hazards (proportional hazards) and from increases

that come from transforming the timing of the

distribution of deaths (accelerated failure time).

Our results show how much of an impact slowing

senescence has on life expectancy, clarifying the

relationship between these different sources of

mortality change. In particular, the results allow us

to see why, in modern populations, reducing the pace

of senescence by 1 per cent, for example, will have a

much larger effect than reducing mortality levels by

1 per cent. Our findings echo those of lifetable

entropy (Keyfitz 1977; Mitra 1978; Goldman and

Lord 1986; Vaupel 1986), except that we consider the

case of changing the ‘slope’*the pace of ageing*
rather than the level of mortality. As lifetable

entropy falls, declining mortality levels have a

smaller and smaller effect on life expectancy, but a

declining pace of senescence has a larger and larger

effect.
The model we call ‘senescence-slowing’ has been

recently introduced into the statistical literature by

Chen and Wang (2000). They call it the accelerated-

hazards model, contrasting it with proportional-

hazards (Cox 1972) and accelerated-failure-time

(e.g., Kalbfleisch and Prentice 2002) models. (All

three of these models are ‘semi-parametric’ in the

sense that the modelled hazard schedule is a

parametric transformation of an arbitrary baseline

schedule.) Because the new literature on acceler-

ated-hazards models is primarily concerned with

multivariate estimation, it appears that the result we

present for expected values has not been previously

stated in an explicit way. Another contribution of

the paper is the new relation between Keyfitz’s

entropy and the change in life expectancy that
would follow from slowed senescence. A final
contribution of our paper is to provide results for
life expectancy under a ‘hybrid’ model that merges
the proportional-hazards and senescence-slowing
models.

Section 2 states our main results and Section 3
contains derivations of these formulae. Section 4
starts with a numerical illustration of slowed senes-
cence, followed by a formal comparison of several
semi-parametric models of mortality change. Section
5 provides two applications of the model*an
empirical application to recent mortality decline in
Japan and a theoretical application to the relation-
ship between period and cohort life expectancy. We
refer to the accelerated-hazards model as ‘senes-
cence-slowing’, and the accelerated-failure-time
model as ‘death-delaying’, linking hazards to senes-
cence and failures to deaths.

2. The effect of slowing senescence on life
expectancy

Keyfitz considered the effect of a proportional
change u!1#d in hazards at all ages such that
the new hazard of death m* was a multiple of the
baseline hazard m0:

m!ðaÞ ¼ ð1þ dÞm0ðaÞ: (1)

He found that the effect on life expectancy of such a
change in the level of mortality could be approxi-
mated by

De!ð0Þ
eð0Þ

& 'Hd (2)

where De!ð0Þ refers to a small change in life
expectancy at age 0 and the ‘entropy’ quantity H is
defined as

H ¼
'
R

log ‘ðaÞ½ ) ‘ðaÞ da

eð0Þ
: (3)

In a typical modern lifetable for adults, H is in the
range of 0.1"0.2, and so reducing hazards by 1 per
cent will increase life expectancy by only about 0.1"
0.2 per cent. Some have used this formal property to
argue that it will be difficult to make rapid progress
in improving longevity (Olshansky 2001).

We model a change in the rate of senescence by
letting the hazard m** at age a be the hazard
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observed in the baseline schedule m0 at the age au, so
that

m!!ðaÞ ¼ m0ðahÞ

for non-negative u. Our first result, derived below, is
that the new life expectancy at birth is

e!!ð0Þ ¼
1

h

Z 1

0

‘ðaÞ1=h da (4)

where ‘ að Þ is the survival function associated with
the baseline hazard schedule. This result is general in
the sense that no restrictions are made on the
baseline lifetable.

Our second result, also derived below, is that the
relative change in life expectancy produced by
accelerating senescence by d can be given in terms
of entropy H. Paralleling Keyfitz’s notion by letting
u!1#d, we find

De!! 0ð Þ
e 0ð Þ

& ' 1'Hð Þd (5)

where H is Keyfitz’s entropy given above.
Equation (5) allows us to estimate the effect of

slowing senescence. Considering again entropy le-
vels in the range 0.1"0.2, a 1 per cent slowdown in
the pace of senescence would increase adult life
expectancy by 0.8"0.9 per cent, as contrasted with
the 0.1"0.2 per cent increase from a similar decline
in the level of mortality. The two effects are
complementary, summing to one. As entropy varies,
the larger the effect of proportional hazards the
smaller the effect of slowing senescence, and vice
versa.

3. Derivations

Equation (4) for life expectancy in terms of u can be
obtained via repeated substitution in the integral

e!! 0ð Þ ¼
Z 1

0

exp '
Z x

0

m0 ahð Þda

! "

dx (6)

First define a new variable w!au to obtain

e!! 0ð Þ ¼
Z 1

0

exp '
1

h

Z xh

0

m0 wð Þdw

! "

dx

¼
Z 1

0

‘ xhð Þ1=hdx (7)

and then define v!xu to obtain

e!! 0ð Þ ¼
1

h

Z 1

0

‘ vð Þ1=hdv ¼
1

h

Z 1

0

‘ að Þ1=hda:

Equation (5) can be obtained by paralleling Key-
fitz’s analysis, approximating the effect of a small
change in senescence on life expectancy as
De!! 0ð Þwith d : de!!=ddjd¼0Þ:ð Thus

De!! 0ð Þ
e 0ð Þ

&
d: de!!

dd d¼0j
e 0ð Þ

¼
d: ' e 0ð Þ þ

R

log ‘ að Þ½ )‘ að Þda
# $% &

e 0ð Þ
¼ ' 1'Hð Þd

where the last equality uses H as in equation (3).
The quantity$(1$H), which measures the rela-

tive impact on life expectancy at age 0 of a small
change in senescence, is also equal to
R

‘ að Þ d=dað Þe að Þda
# $

=e 0ð Þ, where d=dað Þe að Þ is the
derivative of e(a) with respect to age a. Thus $(1 $
H) is a weighted average of the changes in age-
specific life expectancy with weights given by the
probabilities of surviving to each age. As mentioned
earlier, typical values of H for adults are far less than
1, so the quantity 1'H is positive. Consequently,
slowing senescence corresponds to greater longevity.
A sufficient condition for H to be less than 1 is that
hazards increase monotonically.

4. Comparing different kinds of mortality
change

4.1. Numerical illustration of reducing the pace
of senescence for Swedish females

To illustrate the consequences of reducing mortality
via slowed senescence and other models, we used the
2007 period lifetable for Swedish females from the
Human Mortality Database. In order to consider
only the senescent portion of life, we focused on
adult mortality, defined as mortality at ages 30 and
above. Figure 1 shows how a contemporary lifetable
would respond to different kinds of mortality
change, and allowed us to compare and contrast
these effects.

The first panel shows the observed age pattern of
death rates, along with three kinds of mortality
reductions. The proportional-hazards model, shown
with the dotted line, reduces mortality rates by 20
per cent at all ages. The senescence-slowing model,
shown with the heavy dashed line, reduces the
change in mortality with respect to age by 20 per
cent. The death-delaying model, shown with the
lighter dot-dash line, combines these two effects.
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The second panel shows a close-up view of the

same mortality rates across a more limited range of

ages and in the logarithmic scale. The near linearity

of these logarithmic curves means that mortality is

increasing approximately exponentially with age, as

in the Gompertz model. The close-up view shows us

that the senescence-slowing and death-delaying

models change the slope of mortality increase with

age, whereas the proportional-decline model retains

the slope of the original observations, but at a lower

level. It is in this sense that senescence-slowing can

be considered a slope change. The third and fourth

panels of the figure show the impact of changing

mortality rates on the survival curve and distribution

of deaths. We see that the change in the survival

curve is large for the senescence-slowing and death-

delaying models but small for the proportional-

decline model. The distribution of deaths is moved

to older ages as a result of the proportional change

in deaths, a well-known result of applying propor-

tional hazards to the Gompertz model (e.g., Vaupel

1986; Goldstein and Wachter 2006). In addition to a

change in ‘location’, the slowing of senescence also

broadens the distribution of deaths.
The life expectancies at age 30 associated with the

four curves are 53.5 for the observed lifetable, 55.4

for the proportional reduction, 64.3 for senescence-

slowing, and 66.7 for delayed-deaths.
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Figure 1 Comparison of the effect of various kinds of stylized mortality decline for Swedish females over 30
years of age
Source: 2007 period lifetable from the Human Mortality Database.
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4.2. A more formal comparison, along with a
flexible hybrid model

We show a formal comparison of selected lifetable
functions under various semi-parametric models of
mortality change in Table 1. The first column gives
the name of the model as used in this paper. The
‘baseline’ row provides the definitions of the base-
line hazards m(a) and survival ‘(a) used in the rest of
the table. The standard proportional-hazards results
are shown in the next row. The ‘senescence-slowing’
row summarizes the results given in equations (4)
and (5), which were derived in Section 3. The ‘death-
delaying’ row gives the definition of the standard
lifetable functions according to the accelerated-fail-
ure-time model (e.g., Kalbfleisch and Prentice 2002)
in terms of the common parameter u. The deriva-
tions for this model are

survival ¼ exp '
Z a

0

hm0 xhð Þdx

! "

¼ exp '
Z ah

0

m0 wð Þdw

! "

¼ ‘ ahð Þ;

life expectancy ¼
Z a

0

‘ xhð Þdx ¼
1

h

Z 1

0

‘ að Þda;

and

De 0ð Þ
e 0ð Þ

&
d

e 0ð Þ
:
@

@d

1

1þ d

Z 1

0

‘ að Þda

' (

d¼0j
! "

¼
d * '

R

‘ að Þda
% &

e 0ð Þ
¼ 'd:

Table 1 allows us to see that the death-delaying
model can be thought of as a particular combination
of the proportional-hazards and senescence-slowing
models. These three approaches to changing
mortality*proportional reductions in hazards, se-
nescence-slowing, and death-delaying*can be sub-
sumed in a more general model. We introduce this
more general model, which we call the ‘hybrid

model’, in the last row of Table 1. In this case we
modify the baseline mortality schedule m0(a) with
two parameters u1 and u2 to get

mðaÞ ¼ h1m0 ðh2aÞ

where the constant u1 provides a proportional
change in mortality and u2 changes the rate of
senescence. Within this framework, the propor-
tional-hazards model is the case where u2!1, the
senescence-slowing model corresponds to u1!1, and
the death-delaying model refers to the particular
circumstance with u1!u2. The hybrid model high-
lights how the death-delaying model is a limited
special case of something more general. We present
an application of the hybrid model to recent
mortality decline in Japan below.

The final column in Table 1 gives the proportional
effect on life expectancy of a small change in u, with
d ¼ h' 1. For the hybrid model we use d1 ¼ h1 ' 1
and d2 ¼ h2 ' 1. In terms of the proportional effect
of a change in the parameters on life expectancy, we
see that the death-delaying model is the combined
effect of senescence-slowing and proportional ha-
zards since 'Hdþ ' 1'Hð Þdð Þ ¼ 'd. The effect of
the hybrid model is also the combination of these
two models but allows unequal values of d1 and d2.

We have used the parameter u to measure the
pace of senescence. For example, if a 30 year old
faces the mortality rates previously known to a 60
year old, then it is natural to use the number 2 to
describe the speed of senescence. There are however
other descriptions of changing senescence. For
example, the rate of change in age-specific mortality
with age, introduced by Horiuchi (1983) and now
called the lifetable-ageing rate (LAR), is given by

dlog m að Þð Þ
da

¼
d

da
m að Þ
m að Þ

:

Using the models in Table 1, we find that the LAR
for the proportional hazards is the same as the LAR

Table 1 Summary of mathematical results for various semi-parametric models of changing mortality

Model Hazard Survival Density Life expectancy
De

e 0ð Þ
Baseline m(a) ‘ að Þ m að Þ‘ að Þ

R

‘ að Þda 0

Proportional-hazards um(a) ‘ að Þh hm að Þ‘ að Þh
R

‘ að Þhda 'Hd

Senescence-slowing m(ua) ‘ hað Þ1=h m hað Þ‘ hað Þ1=h 1
h

R

‘ að Þ1=hda ' 1'Hð Þd
Death-delaying um(ua) ‘ hað Þ hm hað Þ‘ hað Þ 1

h

R

‘ að Þda 'd

Hybrid model u1m(u2a) ‘ h2að Þh1=h2 h1m h2að Þ‘ h2að Þh1=h2 1
h2

R

‘ að Þh1=h2 da 'Hd1 ' 1'Hð Þd2

Note: d ¼ h' 1, and in the hybrid model d1 ¼ h1 ' 1 and d2 ¼ h2 ' 1. The rightmost column represents
approximations that are sufficiently accurate if d is small.
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for the baseline schedule. This is not surprising since
the proportional-hazards model does not change the
slope of mortality. Similarly, the death-delaying and
senescence-slowing models both influence LAR in
the same way, as does the hybrid model (assuming
u2!u). Again, this is to be expected since each of
these models changes the slope of mortality hazards
in the same way.

5. Applications

5.1. An empirical example of the ‘hybrid’ model
to slowing senescence with additional declines in
mortality level in Japan

We now consider an application of the ‘hybrid’
model to a recent example of mortality decline.
From the many patterns of observed mortality
decline over time and across populations, we chose
the example for Japanese adult males for 1990 and
2005 shown in Figure 2. It can be seen from the
figure that although mortality fell at all ages, the
decline was substantially faster at older ages than at
younger ages. The fit of the ‘hybrid’ model is shown
in the dashed line, with ĥ1 ¼ 0:928 and ĥ2 ¼ 0:961. It
can be seen from the close fit of the hybrid estimate
and the observed 2005 mortality rates that a decline
in both level and slope appears to be a good
description of the change in mortality in this period.
In particular, the hybrid model fits very well from

ages 30 to 90. Only at the oldest ages does the
slowing of senescence appear to be less than the
model values.

From 1990 to 2005, the life expectancy of Japanese
males at age 30 rose from 47.17 to 49.42 years. The
‘hybrid’ model can show how much of this increase
was due to decline in mortality level (d1) and how
much to slowing senescence (d2). We estimated
d̂1 ¼ '0:072 and d̂2 ¼ '0:039. In words: the level of
mortality fell by about 7 per cent while the pace of
ageing fell by about 4 per cent. (We estimated d̂1 and
d̂2 using the non-linear least squares function nlm()
in R. We minimized the sum of squared residuals of
log-mortality rates plus the sum of the squares of the
difference in life expectancy calculated from fitted
and observed age schedules. More robust methods
could certainly be developed.)

Under the hybrid model, the first-order Taylor
series estimate of the change in life expectancy
relative to life expectancy is

D 1ð Þe 0ð Þ
e 0ð Þ

¼ 'Hd1 ' 1'Hð Þd2:

From the 1990 lifetable we observe an increase of
2.25 years in life expectancy at age 30. Using the
lifetable we calculate that H is approximately 0.21,
which gives us an estimated 2.17-year increase in life
expectancy at age 30, of which 0.71 years was due to
decline in level and 1.46 years was due to decline in
slope.
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Figure 2 Fit of hybrid model combining slowing-senescence and proportional-hazards decline for mortality
rates of Japanese adult males, 1990 and 2005, with hybrid model fit to 2005
Note: The hybrid model was fit by transforming the 1990 schedule using non-linear least squares to pick the most
appropriate values of u1 and u2 (equivalently, d1 and d2) with the additional objective that the life expectancy of the fitted
2005 schedule be very close to that of the observed 2005 schedule.
Source: Human Mortality Database.
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The decomposition can be improved by using a
second-order Taylor series approximation as

D 2ð Þe 0ð Þ
e 0ð Þ

¼ 'Hd1 þH2

d2
1

2

" #

þ ' 1'Hð Þd2 þ 2' 4H þH2ð Þ
d2

2

2

" #

þ 2H 'H2ð Þd1d2½ )

where H2 ¼
R

log lxð Þ
2lxdx

) *

=e0 and d2
1 and d2

2 are the
squares of d1 and d2. Using the 1990 lifetable again
we get a value for H2 that also rounds to 0.21. In this
case, the estimated life expectancy increase is 2.27
years (as compared to the 2.25-year change ob-
served), with 0.73 years due to falling levels given by
the first bracketed term, 1.51 years due to declining
slope given by the second bracketed term, and 0.03
years due to the interaction of slope and level effects
given by the third bracketed term. The small value of
the interaction term suggests that the decomposition
into additive slope and level effects is a nearly
complete description of the change in life expec-
tancy.

The hybrid model thus allows us to say that in the
case of recent improvements in the mortality of
Japanese males, changes in level were responsible
for about one-third of adult life expectancy improve-
ment, whereas the apparent slowing of senescence
was responsible for about two-thirds. Although the
changes in level were nearly twice the magnitude of
the changes in slope, the low entropy value (:0.2)
meant that the slope change had a bigger impact on
life expectancy than the change in level.

In this application, we chose an example in which
both slope and level effects contributed to longevity
increases. The hybrid model can also describe effects
that go in opposite directions, such as the decline in
level and increase in slope that describes much of the
mortality decline observed until recently.

5.2. Cohort"period translation as slowing
senescence

A second, more theoretical application of the
senescence-slowing model is to the problem of the
relationship between period and cohort life expec-
tancy (Canudos-Romo and Schoen 2005; Goldstein
2006; Goldstein and Wachter 2006; Rodrı́guez 2006).
Here we show that when mortality is shifting steadily
to older ages, the cohort lifetable is a senescence-
slowed version of the period lifetable.

Bongaarts (2005) considers a shift-based model of
adult mortality, namely

ms a; tð Þ ¼ ms a' S tð Þ; 0ð Þ (9)

where S(t) is the amount of shift in years up or down
the age axis, and the subscript s distinguishes the part
of mortality that varies with age from the back-
ground mortality that does not change with age. The
case of linear shifts is given by S(t) !rt.

Cohort life expectancy under linear shifts corre-
sponds to a slowed-senescence version of period life
expectancy with u!1 $ r. To see this, note that
the cohort born in year t!0 experiences hazards
ms(a,a)!ms(a(1$r),0) which in senescence-slowing
terms is m0 hað Þ, with h ¼ 1' r. Thus, for any pattern
of mortality improvement based on linear shifts,
regardless of the baseline hazard, cohort life ex-
pectancy will be given exactly by the equivalent
senescence-slowed version of period life expectancy.
Furthermore, the same relationships involving en-
tropy apply, with cohort life expectancy being bigger
than period life expectancy by a proportional
amount approximated by r 1'Hð Þ and an absolute
gap approximated by e0r 1'Hð Þ.

In the special case of a Gompertz mortality
schedule with continuous proportional decline, the
slowing rate of senescence of the cohort relative to
the period can be seen directly. When

lða; tÞ ¼ aðtÞeba ¼ a0e'kteba (10)

the cohort born in year t experiences hazards m(a,t#
a)!a(t)e(b$k)a. This is equivalent to changing the
speed at which hazards rise with age, and thus
analogous to the senescence-slowing model of
m að Þ ¼ m0 hað Þ, with h ¼ 1' k=b. Applying our result
(5) for slowing senescence to the Gompertz case, the
gap between cohort and period life expectancy (cf.,
Goldstein and Wachter 2006) is approximately
k=bð Þ 1'Hð Þe0, since here 'd ¼ k=b.

To get a sense of the magnitude of the difference
between period and cohort life expectancy, let
b:0.1 and a:0.0001. The Gompertz schedule
then gives us e0:63 years and H & 1=e0bð Þ & 0:16.
The 1 per cent annual decline in hazards (k!0.01)
produces a cohort life expectancy 0:01=0:1ð Þ
1' 0:16ð Þ & 8 per cent longer than period life

expectancy, corresponding to a value of 69 years,
or 6 years longer than period life expectancy.
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6. Discussion

The complementarity between the entropy H of the

proportional-hazards model and the effect of chan-

ging the rate of senescence (1 " H) given in (5)

means lifetables with a large response to changing

the level of hazards will have a small response when

changing the rate of ageing, and vice versa. For

example, when hazards are constant, 1 " H!0,

which makes sense since, under constant hazards,

transforming age from a to ua makes no difference.

At the other extreme, if hazards are zero until some

age when they become infinite, all deaths will be

concentrated at this age. In this case, H!0, since

proportional changes in the level of hazards taking

the value of zero or infinity are without conse-

quence. Any change in the age at which hazards

become infinite, however, will be perfectly reflected

in a change in life expectancy, with 1'H ¼ 1.
Current human lifetables in low-mortality coun-

tries have values of H approximately from 0.1 to 0.2.

A 10 per cent decline in hazards at all ages would

increase life expectancy by 1"2 per cent. A 10 per

cent slowdown in the pace of senescence would

increase life expectancy by 8"9 per cent. As H gets

smaller, the distinction between the senescence-

slowing model and the death-delaying model be-

comes less important. This is because the additional

effect of changing the level of hazards has a smaller

and smaller impact relative to the effect of changing

the slope.
Historically, entropy for adults has fallen over

time, from about 0.3 in nineteenth-century Sweden

to about 0.1 in contemporary low-mortality popula-

tions. This decline in H means that the relatively

greater impact of slope vs. level changes has itself

increased over time. Whereas in the nineteenth

century the benefit of slowing the ageing process

would have been perhaps 2"3 times the benefit of

lowering the level of mortality, today the benefit is

nearly 10 times as large. The mathematics of mortal-

ity change thus provides good reasons why research-

ers on ageing want to focus now, more than ever, on

slowing ageing itself. It remains to be seen how

difficult or costly it will be to slow ageing, but the

mathematics shows us that even small reductions in

the pace of ageing could lengthen lives considerably.
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