
Bayesian Forecasting of Cohort Fertility 

Author(s): Carl Schmertmann, Emilio Zagheni, Joshua R. Goldstein and Mikko Myrskylä 

Source: Journal of the American Statistical Association , June 2014, Vol. 109, No. 506 
(June 2014), pp. 500-513  

Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association 

Stable URL: https://www.jstor.org/stable/24247181

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

Taylor & Francis, Ltd.  and American Statistical Association  are collaborating with JSTOR to 
digitize, preserve and extend access to Journal of the American Statistical Association

This content downloaded from 
�������������128.32.10.230 on Sun, 25 Oct 2020 22:05:29 UTC������������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/24247181


 Bayesian Forecasting of Cohort Fertility
 Carl Schmertmann, Emilio Zagheni, Joshua R. Goldstein, and Mikko Myrskylä

 There are signs that fertility in rich countries may have stopped declining, but this depends critically on whether women currently in
 reproductive ages are postponing or reducing lifetime fertility. Analysis of average completed family sizes requires forecasts of remaining
 fertility for women born 1970-1995. We propose a Bayesian model for fertility that incorporates a priori information about patterns over
 age and time. We use a new dataset, the Human Fertility Database (HFD), to construct improper priors that give high weight to historically
 plausible rate surfaces. In the age dimension, cohort schedules should be well approximated by principal components of HFD schedules. In

 the time dimension, series should be smooth and approximately linear over short spans. We calibrate priors so that approximation residuals
 have theoretical distributions similar to historical HFD data. Our priors use quadratic penalties and imply a high-dimensional normal
 posterior distribution for each country's fertility surface. Forecasts for HFD cohorts currently aged 15-44 show consistent patterns. In the
 United States, Northern Europe, and Western Europe, slight rebounds in completed fertility are likely. In Central and Southern Europe, East

 Asia, and Brazil, there is little evidence for a rebound. Our methods could be applied to other forecasting and missing-data problems with
 only minor modifications.

 KEY WORDS: Bayesian model; Demographic forecasting; Improper priors; Penalized least squares.

 1. INTRODUCTION few recent examples of increased cohort fertility in Scandinavia
 (Andersson et al. 2009), but in most countries the cohorts of
 women whose lifetime fertility might be increasing are still
 young, and their final fertility levels depend on future rates
 (Frejka and Calot 2001).

 Our objective in this article is to produce useful forecasts
 of completed cohort fertility for women born in the 1970s and
 1980s, by using a combination of new methods and a large new
 fertility database. Figure 1 shows an example forecasting prob
 lem, using data from the Czech Republic. Precise rate estimates
 are available for Czech women by single years of age for cal
 endar years through 2009 from the Human Fertility Database
 (HFD 2011, described in detail later). This yields complete rate
 histories over ages 15^14 for women born 1956-1965, and par
 tial histories for cohorts of women born after 1965. The data

 indicate a radical change in Czech fertility patterns in the post
 Communist era. The top edge of the figure contains values for
 the cohort total fertility rate (CFR), which is the average number
 of children ever born to women with a particular birth year. The
 previous Czech pattern of early births and replacement-level
 cohort fertility (CFR = 2.1) has given way to later births and a
 still-unknown level of completed fertility. The central question
 that a forecast must address is whether women in the later co

 horts are reducing fertility, or merely postponing it. The same
 question arises in other developed countries.

 Fertility has experienced long-term declines in many devel
 oped countries, but recent studies have noted small increases in
 some parts of Europe, North America, and Asia (Sobotka 2008;
 Goldstein, Sobotka, and Jasilioniene 2009; Myrskylä, Kohler,
 and Billari 2009; Luci and Thevenon 2010; Myrskylä, Goldstein
 and Chen 2013). The future size and age structure of national
 populations depend largely on birth rates, so governments and
 planners are naturally interested in knowing whether fertility
 decline is slowing or reversing.

 Answering that question with current data is complicated.
 Statistical agencies estimate the most common fertility
 index—the total fertility rate (TFR)—by aggregating the
 age-specific fertility rates of a calendar year. Thus a TFR such
 as 1.16 children per woman (for the Czech Republic in 1998)
 does not correspond to average lifetime childbearing by any real
 group of women, but rather to a fictitious group who experience
 1998 age-specific rates over their reproductive lifetimes. This
 kind of period measure is vulnerable to what demographers
 call tempo distortion. In particular, an increase in TFR does
 not necessarily mean that women are beginning to have larger
 families. It could instead mean that postponement of fertility to
 higher maternal ages is slowing (Bongaarts and Feeney 1998;
 Van Imhoff and Keilman 2000; Kohler and Philipov 2001; Zeng
 and Land 2002; Goldstein, Sobotka, and Jasilioniene 2009).

 Simply put, standard fertility indices derived from current 2 DEM0GRAPHIC FORECASTING
 annual birth and population information cannot tell us the
 future. Estimating the final fertility of cohorts (i.e., real groups Recent changes in fertility levels and timing make our
 of women, such as those born in 1970, 1980, or 1990) requires forecasting question especially timely, but of course the basic
 either waiting for those women to reach the end of reproductive problem is not new to demography. There is a growing literature
 ages, or making forecasts. The waiting strategy has produced a in forecasting mortality, much of it derived from Lee and Carter's

 (1992) singular value decomposition approach for period mor
 tality forecasts (e.g., Renshaw and Haberman 2006; Booth and
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 Figure 1. Czech Republic HFD (2011) fertility estimates by cohort year of birth and single year of age, for women born after 1955. Darker
 cells indicate higher rates. Cells in the upper right, such as (born in 1980, age 40), will occur in the future. Cohort fertility rates (CFR) appear
 above the plot, and are incomplete for cohorts born after 1965.

 fertility models that we develop in this paper are based largely rates do not come with straightforward and well-developed
 on their approach. Their book is also a good starting point methods for evaluating forecast uncertainty,
 for demographic readers to whom Bayesian modeling may be In this article we extrapolate over both time and age, com
 unfamiliar. bining what demographers already know about plausible age

 Fertility forecasting is a far more difficult problem. Unlike patterns of fertility with recent trends in age-specific rates. We
 death, childbearing is both optional and repeatable. Its timing is build a Bayesian model for Lexis surfaces such as those in
 strongly affected by conscious decisions. In addition, mortality Figure 1, with priors constructed from a large archive of histor
 rates change predictably in one direction over time, while ical fertility data.
 fertility rates fluctuate. Despite these difficulties, there is Our approach uses available information without imposing
 a sophisticated literature, parallel to that for mortality, on rigid models or making strong assumptions about the object of
 forecasting period fertility rates and the completed fertility of the forecast. Our goal is to use Bayesian methods with priors
 cohorts (Bloom 1982; de Beer 1985; Thompson et al. 1989; that explicitly incorporate some of the knowledge that is im
 Chen and Morgan 1991; Lee 1993; Li and Wu 2003; Goldstein plicitly used by existing forecast methods. We expect that such
 2008; Hyndman and Booth 2008; Chen 2010; Cheng and Lin methods may find better compromises between recent trends in
 2010; Alkema et al. 2011; Myrskylä, Goldstein, and Chen observed data and known age, period, and cohort fertility pat
 2013). Booth (2006) offers an excellent overview and history terns. In developing this model, our main tasks are to define
 of demographic forecasting in general, including a discussion qualitative priors that include existing demographic knowledge
 of approaches to cohort fertility completion. about fertility patterns over age-time Lexis surfaces, to devise

 Demographers call a surface of rates such as that in Figure 1 appropriate mathematical specifications for those priors, and to
 a Lexis surface. In the case of a partially observed Lexis design appropriate computational methods,
 surface, forecasting models can extrapolate over time, over
 ages, or both. In Figure 1, a time series approach would
 extrapolate available age-specific rates into the future (from pprtii itv ηδτδrδQρ δμγι
 l.f, ,o Hgh, in the diagram), „h„e a cohott approach „„„Id 3 s^MFfN^
 fit models to data tor incomplete cohorts and thus extrapolate
 to future ages (from bottom to top). A principal challenge for We base our analysis on a new public dataset, the Human Fer
 any model is to produce coherent forecasts, in which both time tility Database (HFD 2011). The HFD is a cooperative project
 trends and cohort schedules are demographically plausible. In of the Max Planck Institute for Demographic Research and the
 particular, it is essential to use recent trends (particularly on Vienna Institute of Demography. We downloaded data compris
 postponement to higher maternal ages) in a way that avoids ing 44,400 estimated fertility rates for 24 countries or regions
 forecasts with demographically implausible age patterns for in Europe and North America, categorized by single-year of
 cohorts. age (12,13,... ,55) and single calendar year of data collection,
 Another important forecasting challenge is the evaluation of over periods of up to 120 years ending near 2009. HFD (2011)

 uncertainty. Deterministic models that employ simple cohort protocols carefully allocate these data to women by their year
 extrapolations or parametric trajectories for future age-specific of birth.
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 We combined HFD data with period rates collected by · Gc = [0... IA ... 0] e RAxCA, a matrix such that θ(: =
 Myrskylä and colleagues for 12 additional countries (Australia, Gc6;
 Belgium, Denmark, Greece, Iceland, Italy, Japan, Korea, Lux- · Ha = Ic ® (0... 1 ... 0) € RCxCA, a matrix such that

 θα = Ηα0;
 CFR( = (1... 1) ec e R, the completed fertility of cohort
 c;

 y e R", a vector of published data for some subset of 0;
 and

 V € RnxCA, a matrix of ones and zeroes such that V θ e

 R" is the subset of parameters corresponding to y.

 embourg, New Zealand, Romania, and Singapore), and also with
 period rates for Brazil 1966-2010 provided by Dr. Everton Lima
 (personal communication, January 7,2013). This produced a fi
 nal dataset covering 37 countries, which is heavily European but
 also includes data from North America, South America, Asia,
 and Oceania.

 In this dataset, we call the vector of rates for a cohort at
 ages 15—44 its cohort fertility schedule, and define a schedule
 as complete if rate estimates are available at all 30 ages. As an In the forecasting problem, y is a set of external estimates of
 example, in Figure 1 the schedule for Czech women born in 1960 past fertility rates, provided by a national statistical agency, that
 is complete, while the schedule for women born in 1980 is not. plays the role of observed data. As in Figure 1, the C χ A Lexis
 We have data from 3223 cohort schedules, of which 1015 are surface θ is a larger set that not only includes those past rates,
 complete. The earliest complete schedule is for Swedish women but also extends into the future.

 born in 1876; the latest are for women born in the mid-1960s in We model parameters θ and observations y in a Bayesian
 each country. framework
 We separate our data into two nonoverlapping subsets:

 In P(ß\y) = const + In L(y\θ) + In /(0), (1)
 Contemporary data for forecasting exercises over surfaces
 such as Figure 1.

 Historical data comprise all complete fertility histories for
 cohorts born earlier than those appearing in any forecast
 surface.

 where P(), L(), and /() represent, respectively, the posterior
 density, the likelihood function, and the prior density. Const

 Historical data, for use as a source of a prion information. . . . „ „ !,. ,,. , ,
 A t . n , ^ u;„. is a term that does not vary with Θ. Fertility rates published

 by national statistical agencies typically come from very large
 risk populations. This justifies a normal approximation for the
 likelihood.

 The historical dataset contains S = 469 complete cohort j
 schedules for women born in any country between 1900 and L(y\e) = const — -(y — ν0)'Φ '(y — V0), (2)
 1949. Appendix Table Al summarizes the available data for , T ,. r ^ .
 complete cohort schedules. where *f dla&=!-«^1 " *] ™ and W>1S the "umber of

 , α-year-old women in the (c,a) cell corresponding to the i-th rate. We organize the historical dataset as a 30 χ 469 matrix Φ, , , ,.
 . , , . . . . , , , In most cases Vr, values are very large, so that sampling variances with each column containing one complete historical sched- , . , , ,
 , „ . a*, c u . , . c are near zero and estimates ν are almost always extremely close ule. Contemporary data for each country (such as that for the , „ - r . , J

 /- l η .,· · r- η · r .'ft , , , , . to the true fertility rates in the preforecast period. Czech Republic in Figure 1) comprise fertility schedules, both , , . , .
 . t . r n . ,. As we describe in detail below, we use a log prior density of complete and incomplete, for all women born after 1949. ' J

 The HFD represents an unprecedented collection of coherent

 and comparable fertility data. Combining the HFD with supple- jn _ const _ I$'K0 (3)
 mental data creates a contemporary dataset that is an excellent 2
 testbed for comparative forecasts. Furthermore, the historical where the constants in CA χ CA matrix Κ are estimated from
 portion of the dataset is an ideal source of a priori information patterns in historical data. In combination with the normal like
 on the nature of cohort fertility schedules and their changes over lihood function (2), this prior implies, conditional on K, a mul
 time. The use of a large collection of historical data to inform tivariate normal posterior for 0|y, with CA χ 1 mean vector
 and construct improper priors about age and time patterns of
 cohort fertility is one of the main novelties in our forecasting
 exercise. and CA χ CA covariance matrix

 Mpost = [Υ'φ-'ν + Κ] [Υ'Ψ y] (4)

 4. NOTATION, MODEL, AND METHODS Epost _ [ν'Φ 1V + K] '. (5)
 r , At t , ^ . The posterior distribution over each country's Lexis surface, For contemporary data in a country, we have C birth cohorts J

 of interest (c = 1 ... C) over A reproductive ages (a = 1 ... A). (0|yCoumry) ~ N(pposu Epost), (6)
 For this country, define (with all vectors as columns, and using .
 d. ... . e , u π t t ν ι serves as a probabilistic forecast for its future age-specific fertil R to represent the set of real numbers, ® to represent Kronecker . ' ,fc.
 roducts)· ity rates. Because CFRc = (1... \)0C = 1GC0 is a linear func

 tion of θ, the posterior distribution also provides a probabilistic
 • θ,·α € R, the true fertility rate for cohort c between exact forecast for our primary measure of interest, completed cohort
 ages a and a + 1; fertility.

 • 6>c = (6>ci · · · &cA)' e RA, the fertility schedule for cohort c; The critical part of this model is the large, rank-deficient
 • θα — (θ\α ... θ0α)' 6 Rc, the time series of rates at age a\ matrix Κ that specifies the improper normal prior in Equation
 • θ = (θ[.. .e'c)' e Rca, the vector of all rates, sorted by (3). Our basic approach, similar to that in Girosi and King
 age within cohort; (2008) or Wood (2000), is to build Κ by additively combining
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 a series of squared-error penalties that apply to small subsets of demographic interpretations. Weights on components 1-3 affect
 the Lexis surface θ—in particular, to separate cohort schedules the overall cohort fertility level, the mean age of childbearing,
 and to the time series of fertility rates at each age. Each penalty and the variance of childbearing ages, respectively. Increases in
 j = 1 ... 7 is based on a residual vector R;Ö that is usually component 2 correspond to fertility postponement, with rates
 near zero in historical surfaces, in the sense that the "penalty decreasing before age 25 and increasing at higher ages,
 term" ΘΊIjRjO is usually small. We construct Κ by adding: Any cohort schedule 0e can be decomposed into its projection
 our prior states that a surface θ is more likely a priori when onto the column space of X and an orthogonal remainder:

 all penalties are small and 6>'(R,'RH FR'./R/)0 = Θ'ΚΘ is ^ _ Χ(Χ'Χ\-ιχ'0 +ε ,η\
 near zero. When expressed as in Equation (3), this penalization
 procedure is equivalent to assuming a multivariate normal prior where the remainder vector is
 for specified linear combinations of θ.
 We construct penalty terms by combining demographic

 knowledge with empirical patterns in historical fertility data. Because X contains schedule components with large singular
 As a result, we assign lower a priori probabilities to historically values, remainder vectors should typically be small. We can
 implausible θ surfaces that have (1) age patterns in cohort fer- define "small" by constructing residual vectors for all complete
 tility schedules θ\ ... θ c that are unlike those in the historical cohort schedules in the historical array Φ, and calculating their
 data [via cohort penalties], and (2) patterns in time series of average outer product:

 age-specific rates θ ^ ... θ44 that are unlike corresponding se- I
 ties in the historical data [time series penalties]. The process of Ω = - ^ ε, e's. (9)
 repeated penalties builds a scaffolding for a partially complete ,s j
 rate surface like that in Figure 1, with vertical (cohort) and hor- These historical data allow us to establish a scalar penalty for
 izontal (time-series) beams that extend from the past into the the "badness" of each cohort schedule's shape
 future. Details are in the next sections. r _

 7tc ~ ε sc

 4.1 Cohort Penalties = θ;[Μω+Μ]Θ,
 In all of the examples and calculations for this paper, we deal — θ'[0'ΓΜΩ1 MGcJ0

 with rate surfaces over exactly A = 30 ages (15,... ,44) and C = _ g'KH (10)
 40 cohorts (women born in 1956,... ,1995), and we will assume
 those values from this point forward. For each cohort schedule 0C where the + superscript represents the Moore-Penrose pseu
 we define historically unlikely age patterns via the singular value doinverse (Penrose 1955), necessary because rank(M) = A-3 =
 decomposition (SVD) of the historical data array, Φ = UDV'. 27. By construction, the empirical average of nc across the
 Call X the 30x3 matrix constructed from the mutually orthogo- historical cohort schedules in Φ equals 27.
 nal U columns corresponding to the three largest singular values In our forecasting problem we deal with surfaces, like that in
 in D. Figure 2 shows these three X columns, which have clear Figure 1, for which we have precise rate estimates at every age

 for the first 10 cohorts 1956, ... ,1965. We therefore use the
 shape penalties for cohorts with at least some unknown rates,
 namely for the 30 cohorts born in 1966 ... 1995.

 An important feature of this cohort shape penalty π c is that it
 is improper, in the sense that an uncountably infinite number of
 fertility schedules correspond to any given level of the penalty.
 To take the simplest example, the minimum penalty nc = 0
 occurs for any schedule that is an exact linear combination of
 X columns, regardless of the specific weights on the columns.
 In other words, by applying this penalty we assume no a priori
 knowledge of the specific shapes or levels of cohort fertility
 schedules. We assume only that, in the cohort dimension, a
 surface θ can be well-approximated by the same components
 that best approximate historical schedules. An important benefit
 of this approach is that a rate surface could have cohort schedules
 with shapes and levels not seen in the historical data, without
 heavy penalties. Because there are no priors on the component
 weights, a three-component approach is flexible enough to allow
 many shapes that are not well represented in the historical data.
 Perhaps most importantly, our measure does not heavily penalize
 the bimodal age patterns that may be emerging in English

 Figure 2. First three principal components X, from the singular speaking countries (Sullivan 2005).
 value decomposition of historical cohort schedules. These three com- Figure 3 illustrates the shape penalty. It contains the observed
 ponents account for >95% of deviations of historical rates from their cohort schedule for USA 1942-born women from the HFD (dark
 age-specific means. solid line), the projection of that schedule onto the column space

 —[7 1 1 1

 30 35 40 45

 /

 X

 X '
 X 7
 ν 7

 /

 /

 /

 / 3

 Age

 Figure 2. First three principal components X, from the singular
 value decomposition of historical cohort schedules. These three com
 ponents account for >95% of deviations of historical rates from their
 age-specific means.
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 USA 1942 Observed

 penalties for a given rate surface, based on standardized residu
 als from rules of this type. The larger these time series residuals
 are, the less plausible is the rate surface 0 a priori.

 SVD Projection Figure 4 illustrates our implementation of freeze-rate and
 SVD Residual freeze-slope residual measures, using historical rate data from
 Other Schedules with Dutch women born in the 1930s. The figure shows fertility rates
 Identical Penalty at age 25 for each cohort, and shows the forecast values for the

 1936 cohort based on the rates among women born 1931-1935.
 The observed rate for 1936-borns was 0.203. The freeze-rate

 forecast for 1936 would be 0.195, because 025,1935 = 0.195.
 The freeze-slope forecast would be 0.200, because the fitted
 slope over the 1931-1935 cohorts is A^s = +0.005. Thus the
 freeze-rate residual for 1936 is u = 0.203—0.195 = 0.008, and

 the freeze-slope residual is ν = 203—0.200 = 0.003. In this
 particular example both residuals are small, as they typically
 are in the historical data, given the smoothness and short-term
 predictability of rates at any given age across adjacent cohorts.

 There is wisdom in both of these standard forecasting ap
 proaches: age-specific rates do trend steadily upward or down
 ward over periods of five or ten years (favoring freeze-slope),

 Figure 3. Observed cohort fertility schedule for US women born in but biological constraints and the impossibility of negative rates
 1942 (solid dark line), and best approximation of that schedule using the also mean that such trends cannot continue indefinitely (favor

 three SVD components in Figure 2 (dark squares). The approximation jng freeze-rate). One recent paper on short-term cohort fertility
 residuals, represented by a thick gray line, generate a shape penalty forecasting (Myrskylä et al. 2013) combined these approaches
 of 27.07. Dashed lines represent hypothetical schedules with identical ^ an ad hoc manne(. by assuming five years of freeze-slope
 values for shape penalty. changes for each age-specific time series, followed by unchang

 ing freeze-rates. In a Bayesian framework a researcher does not

 of SVD components X (solid squares), and the residuals ε that have to make such ad hoc assumptions, nor even make an explicit
 cannot be explained via the X components (thick gray line along choice between the competing models. Because these models
 horizontal axis). After calculating the overall covariance matrix are 1101 mutually exclusive (a sequence of rates can be both con
 of shape residuals as in Equation (9), the calculated penalty for stant and smooth) we can incorporate both probabilistically, and
 this observed schedule is πc = 27.07. This penalty is very close then calibrate the errors appropriately.
 to the empirical average of 27, so that the size and pattern of At each age on the Lexis surface, we define a vector of 30
 the USA 1942 residuals are in some sense typical of historical freeze-rate residuals for cohorts 1966-1995:
 data. The most interesting feature in Figure 3 are the three
 dashed lines, which represent other hypothetical schedules with wa, 1966 — fa,i965
 identical penalties nc = 27.07. By design, our improper cohort
 shape penalty cannot distinguish any of these four very different
 age patterns as more or less likely than any other.

 4.2 Time Series Penalties

 Our second set of penalties concerns change and stability in
 the time series of rates at each age. Current demographic fore
 casting models use two main methods for extrapolating observed

 fertility rates into the future, which we will call the freeze-rate = W+0„ = YV κ H„ θ (11)
 and freeze-slope approaches. The freeze-rate method assumes

 fa, 1995 — "a, 1994

 0 ··· -1 1 0 ■■· 0'
 0 ··· 0 -1 1 ... 0

 ο ... ο 0 ··· -1 1

 that the most likely future value for the fertility rate at age
 a is simply the last observed rate at that age. The freeze-slope
 method assumes that trends, measured as fitted slopes over some
 recent period, will continue into the future. Expressed in terms of
 one-cohort-ahead forecasts for fertility rates, these two methods

 suggest that

 Freeze-Rate: 0a,c+i ~ 0ac
 Freeze-Slope: 0a,c+i äs 0a c + Ac

 and a similar vector of 30 freeze-slope residuals (observed minus
 expected change):

 0a,1966 — (0a, 1965 + Δ1965)

 0a, 1995 — (0a, 1994 + Δ1994)

 = Ws0a = WsH„0.

 (12)

 where Ac(0atC,..., 0u,c-(W_i)) is a slope estimator based on rates
 at age a over the previous η cohorts, described below. As with Freeze-slope residuals are weighted sums of 0S,
 the shape residuals in the previous section, one can construct such as vajgee = (0α,ΐ966 — |§0α,ΐ965 Δ 550a, 1964 + ^0a,i963 +

 / \ — USA 1942 Observed
 ' \
 / x ■ SVD Projection

 \ — SVD Residual
 \ Other Schedules with

 Identical Penalty
 " \ N

 \

 X V
 \ Ν

 \ s
 \

 x s
 * Ν

 -V N

 I 1 //
 Ν Ν

 Ν Ν
 V V

 Residual Penalty = 27.07
 —I 1 1 1 Γ

 25 30 35 40 45

 Figure 3. Observed cohort fertility schedule for US women born in
 1942 (solid dark line), and best approximation of that schedule using the
 three SVD components in Figure 2 (dark squares). The approximation
 residuals, represented by a thick gray line, generate a shape penalty
 of 27.07. Dashed lines represent hypothetical schedules with identical
 values for shape penalty.
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 Figure 4. Partial time series of Netherlands fertility rates at age 25, illustrating freeze-rate residuals (u) and freeze-slope residuals (v) for
 1936-born women. Freeze-rate forecast equals fertility of 1935-borns; freeze-slope forecast is based on trend over 1931- to 1935-borns.

 Jö^ajgel + 3^Öa,i96i) for the 1966-born cohort.1 These Δ
 weights appear in the appropriate cells of the W5 matrix.

 We calibrated the time series penalties by estimating all
 freeze-rate and freeze-slope residuals at each age in the histori
 cal data. The mean residuals of both methods are near zero at all

 ages, so that the average squared residuals for each (age, method)
 combination serve as estimates of residual variance—call these

 empirical estimates s2Ra and ,s|a. As we did for shape residuals,
 we standardize before constructing penalties. The freeze-rate
 penalty at age a therefore equals

 _ -2 /
 KRa — SRaUaua

 = e'[sR2aH'aW'RWRHa]e
 = θ'ΚΚαθ (13)

 'Omitting the age subscript for clarity, our freeze-slope regression model
 is ec—0c.h = hA for h = 0, ... ,4. The OLS slope estimator for any
 regression model without an intercept is Exy/Σχ2,which in this case is
 Ea[/i-(0c-öc.a)]/Ea[A2], or

 Ac = — (10ö„,c — ea,c-1 — 20„>c_2 — 3Ö0jc-3 — 40O.C-4)

 The freeze-slope residual for cohort c + 1 is then

 Uc+l = $c+l — ißc + Ac)

 = 0C+1 — 30^40θ£· ~~ ^c~l ~ ^c-2 — 30c-3 - 40c—4>·

 and the analogous freeze-slope penalty is

 TtSa — sSa VaVa

 = e'[s^n'awsWsiia]e
 = θ'Κ5αθ. (14)

 It is useful to contrast these penalties with common Bayesian
 priors for smoothness over age and time (e.g., Breslow and
 Clayton 1993; Berzuini and Clayton 1994; Ogata et al. 2000;
 Bray 2002; Schmid and Held 2004; Girosi and King 2008). In
 general, smoothness priors assign high probabilities to series
 with slowly changing slopes. The most common model in the
 literature (called RW2 by Schmid and Held 2004) assumes that
 second differences in a series follow a random walk with small,

 independent perturbations. RW2 is, therefore, a special case
 of our freeze-slope model, with η = 2 and Ac = θαχ — 0„,c_i
 (Breslow and Clayton 1993, pp. 17-18; Berzuini and Clayton
 1994, Figure 3). When examining the historical data, we found
 that RW2 models that were appropriately smooth (i.e., with ex
 pected one-year-ahead prediction residuals similar to our histor
 ical data) were also too volatile (expected five- or ten-year-ahead
 differences were much larger than the corresponding historical
 averages). As a consequence, we adopted the variant described
 above: we use η = 5, rather than η = 2, years of earlier data to
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 estimate the expected change, and we also add freeze-rate where E* is a special operator for the expectation when θ is
 penalties in order to identify less-volatile series as more restricted to the column space of Κ (see Girosi and King 2008,
 plausible a priori. Appendix C), and K+ is the generalized Moore-Penrose inverse

 of the weighted sum K.
 4.3 Weighting Multiple Shape and Time Penalties Our strategy for selecting weights to match historical data

 in the Prior Distribution ,s as follows. By construction, we know the empirical average
 The complex matrix notation in the previous section tends 'or eac^ penalty term in the historical data: 27 for cohort-shape

 to obscure a relatively simple structure, so it is useful to pause penalties and 30 for time-series penalties. Our objective is to
 and remember that there are three basic categories of a priori weights Hfo ... ,W9o such that

 information, and that each penalty term has been standardized E*(n \w) — trace(K K+) = target· for j = 1 90 (17)
 using empirical variance information from pre-1950 cohorts. 1 1 1
 By using this information to construct a prior distribution for Θ, where target, represents the historical average for the penalty,
 we implicitly assume that general features of past rate surfaces In practice, the following elementary search procedure con
 (measured in terms of the frequencies of different values for verged quickly to good solutions:
 shape and time series penalties) will persist into the future in , T ... ,· „ . , . . .

 1 r r 1. Initialize all weights at unity: wi = W2 = ·■ · = W90 = 1
 the countries for which we will forecast age-specific rates and 2 Calculate K _ £ WjKj, and its generalized inverse K+ CFRs.

 3. Calculate Ε*(π;\w) = trace(K,K+) forall j = 1 ... 90
 Table 1 summarizes the logic and the notation that we have . E*,n iu>)

 developed so far regarding penalties over a 30 χ 40 surface of ' Ρ ate wel® ts as WJ ~ target, 7 ~ 1 ■ · ·
 fertility rates for ages 15-44 and cohorts 1956-1995. Stop if converged; otherwise return to Step 1.

 Our prior distribution additively combines all 90 of the Table 2 summarizes the results of the joint weighting proce
 penalty terms in its log-likelihood, using a set of weights to ^ showing the range of wdghts and expected values of the
 adjust the contribution of each penalty j — 1 ... 90. penalties before and after 30 iterations. These weights produce a

 Κ matrix for a prior distribution for which the a priori expected

 In /(#, w) = const — - ^ Wj TCj values of each penalty match the historical average very closely.
 2 j Joint calibration produces the model that we use for fore

 casting, via the conditional posterior normal described in Equ
 ation (6): = const  Σω<κ/

 N ( Mpost - [Υ'φ-'ν + KrW'y], I 0|y ~ Ν { j - , (18) = const - -Θ'ΚΘ. (15) I Epost^fVip-'V + K]-1 j
 where Κ is the weighted sum from Equation (15) using the

 Nonunit weights are necessary because the residuals on which jointly calibrated weights,
 we base the penalties are not mutually independent. Merely as The maximum a posteriori (MAP) estimator of true rates θ
 an example, if cohort shape residuals for a surface are all very is the CA χ 1 mean vector μρθ5„ and the CA χ CA matrix
 small, then large time series residuals may be less likely. We Epost quantifies posterior uncertainty. The η elements of θ that
 demonstrate in the Appendix that for a weighted prior distribu- occur before the forecast date will have very low posterior vari
 tion, the expected value of the /th penalty given {w,} is ances, because we have precise HFD estimates for those rates

 from national statistical agencies. The remaining CA-n elements
 Ε*{πΛυ}) = trace(K;K+), (16) comprise the forecast.

 Table 1. Summary of penalties for rate surfaces over birth cohorts 1956-1995 (C = 40) and ages 15-44 (A = 30)

 Schedule shapes Time-series (freeze rate) Time-series (freeze slope)

 Number of penalties 30 30 30
 Penalty terms 7r 1966 · · ■ tr 1995 xr.is ■ ■ ■ Krm Xsas---Ksm
 Residuals ec=Mflc u„ = W R9a va = W$0e
 Penalty matrices K,966 ... K1995 KR,15 ... KR,44 Ks, 15 · · · Ks,44
 A priori assumption Incomplete schedules well Next cohort's rate at age a well Next cohort's rate at age a well

 approximated by SVD basis predicted by current rate predicted by recent trend
 functions X

 Calibration information from Projection errors from X One-ahead freeze-rate One-ahead freeze-slope
 historical data prediction errors prediction errors
 Number of elements in each 30 30 30

 residual

 Expected value of each 27 30 30
 penalty ( = rank of Μ
 or W)
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 Table 2. Iterative penalty weighting

 Schedule shapes Time-series (freeze rate) Time-series (freeze slope)

 Target value Ε* (π |w) 27 30 30
 Range of w across penalties
 Before iteration 1 1.000-1.000 1.000-1.000 1.000-1.000

 After iteration 30 0.635-0.885 0.066-0.546 0.353-0.601

 Range of E*(n\w) across penalties
 Before iteration 1 14.442-20.183 5.523-15.344 10.622-14.795

 After iteration 30 27.000-27.000 29.997-30.000 30.000-30.001

 4.4 Improper Priors and CFR Forecasts part of the HFD to include cohorts born 1875-1924, reconstruct
 and recalibrate a weighted penalty matrix Κ from those data,

 We emphasize two important points about the historically cal
 ibrated prior distribution. First, it captures features of fertility
 surfaces that are remarkably robust to changes in the historical
 data from which it is constructed. In constructing and calibrating
 priors, we experimented with many subsets of the HFD, using
 different periods and different subsets of countries. In all cases
 the principal components in Figure 2, and the empirical error
 patterns in time series residuals, were quite similar. This consis
 tency of results increases our confidence that the specific prior
 distribution that we have developed from the historical data truly

 captures robust qualitative patterns of fertility surfaces.
 Second, the prior is completely uninformative about absolute

 fertility levels. The improper shape priors introduce informa
 tion only about the relative levels of cohort fertility at different

 ages. Similarly, improper time series priors introduce informa
 tion only about short-term smoothness and stability of rates.
 For all but the youngest women (for whom we have little or no
 fertility history at the time of the forecast), CFR forecasts come

 mainly from the data, not from a priori assumptions.

 and so on. Unfortunately, we lack sufficient historical data for
 this ideal procedure: only Sweden has complete data for any
 cohorts born before 1906, and for many countries in our set data

 collection began late enough that the earliest complete cohort
 was born after 1925.

 Because of these data limitations, for the 1985 simulation we

 use the Κ matrix derived for the 2010 forecasts in the previous
 section. This implies that, unlike in our actual forecasts, in the
 simulations there is some overlap between the data used to de
 velop the prior and the own-country data used in the likelihood.
 The practical consequences of this overlap are slight: as men
 tioned previously, the improper prior is remarkably insensitive
 to the choice of training data.

 Using the prior distribution based on K, we calculated the
 posterior mean and covariance of θ for each country over a grid
 including the 1931-1970 cohorts, based on data that would have
 been available in 1985. We then compared the posterior means
 and credibility intervals for CFRs from this simulated forecast
 to the known CFRs of those same cohorts over the next 25 years.
 Table 3 summarizes results and coverage of CFR forecasts for
 all of the countries for which we could produce 1985 forecasts,
 disaggregated by the age of the cohort at the 1985 forecast hori
 zon. Further details about the simulated forecasts are available

 As in any forecasting problem, it is important to understand on our project website at http://cohort-fertility.schmert.net.
 the degree to which our model adequately estimates forecast Table 3 shows imperfect, but reasonable, coverage for poste
 uncertainty. In order to test coverage performance, we withheld rior credibility intervals. In particular, the 90% intervals perform
 post-1985 period data and simulated the forecasts that would well: they contain 92% of true future CFRs, with fairly good
 have been produced in calendar year 1985. results by age at forecast. In contrast, 50% intervals are gen

 An ideal simulation would move the entire forecast algorithm erally too wide for cohorts near the end of reproductive life at
 back in time by about 25 years: it would redefine the historical the forecast, and too narrow for cohorts who are 25 or 30 on

 4.5 Coverage Validation and Comparisons
 With Alternative Models

 Table 2. Iterative penalty weighting

 Schedule shapes Time-series (freeze rate) Time-series (freeze slope)

 Target value Ε* (π |w) 27 30 30
 Range of w across penalties
 Before iteration 1 1.000-1.000 1.000-1.000 1.000-1.000

 After iteration 30 0.635-0.885 0.066-0.546 0.353-0.601

 Range of E*(n\w) across penalties
 Before iteration 1 14.442-20.183 5.523-15.344 10.622-14.795

 After iteration 30 27.000-27.000 29.997-30.000 30.000-30.001

 Table 3. Simulated 1985 forecasts compared to observed* CFR, by age of cohort in 1985. Error = (Posterior MAP CFR-Observed CFR)

 ι of Observations in posterior probability intervals

 Age at forecast Mean error  Mean Abs error  5 to 95%ile  5 to 25%ile  25 to 75%ile  75 to 95%ile

 20  -0.09  0.15  85  8  54  23

 25  -0.03  0.09  81  13  31  38

 30  +0.01  0.03  94  38  38  19

 35  +0.00  0.01  100  19  75  6

 40  +0.00  0.00  100  12  88  0

 ALL  -0.02  0.05  92  18  57  17

 Target  0  0  90  20  50  20

 *For coverage evaluation we treat CFR data from complete cohorts as observed constants. In fact they are very precise estimates from large national samples. The CFR1960 column
 in Table 5 shows typical standard errors. Results are aggregated over 1985 simulations for the 15 countries in which a 1985 forecast was possible: Austria, Bulgaria, Canada, Czech
 Republic, Denmark, England and Wales, Finland, France, Hungary, Netherlands, Portugal, Slovakia, Sweden, Switzerland, USA.
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 the forecast date. The table also shows that most CFR forecast ages make the sum of age-specific rates (i.e., CFR) more vari
 errors are small for cohorts that have completed fertility through able than one would expect under an assumption of independent
 age 25. In 1985, there would have been a small but definite bias time series by age. The broad comparative coverage information
 in long-range forecasts of future fertility: for most of the cohorts in Table 4 does not highlight another problem with the indepen
 then in their 20s, CFRs forecasts would have been slight under- dent ARIMA model, namely, a systematic negative bias in CFR
 estimates. A Bayesian forecast with our relatively weak priors forecast bands, with 84% of realized CFRs for the 1941-1966
 would have slightly overextrapolated the downward trends in cohorts falling above the posterior medians predicted by the
 fertility across the cohorts born in the 1930s, because their con- ARIMA model, and 53% falling above the posterior 75th per
 tinuation did not imply unusual shapes for cohort schedules, centile.
 This problem occurred in the worst of the simulated 1985 fore- We conclude from this simulation exercise that the Bayesian
 casts, where the 90% posterior probability interval for the CFR model with shape and time parameters is likely to perform well
 of Portuguese women born in 1965 (and thus age 20 on the in terms of forecast coverage. It has good coverage properties
 forecast date) was [1.11, 1.71], compared to a realized CFR of across the 15 country forecasts that we were able to produce for
 1.83. 1985, and it clearly outperforms the tested alternatives.
 It is also useful to compare alternative models, in order to

 evaluate the degree to which using both time and shape priors
 improves forecast coverage. Table 4 repeats the fourth column
 of Table 3, which reports the proportion of post-forecast obser
 vations falling in the 90% posterior interval for the full Bayesian Using our model with the rate estimates available in 2010

 5. 2010 FERTILITY FORECASTS FROM

 CONTEMPORARY DATA

 model. The table also includes coverage calculations for two al- for each country produces a joint posterior distribution for each
 ternative forecast procedures. The first alternative model is a fertility surface Θ, via Equation (18). With 35 countries, 30
 Bayesian model with time series priors only (i.e., wj = 0 for all ages, and thousands of cohorts, this produces a very large set
 cohort shape penalties in Equation (15)). We omitted a model of output that we can only briefly summarize in this article. We
 with only a shape prior from the list of alternatives. Li and focus here on a few cases of interest. Readers can find a larger
 Wu (2003) noted that such models become unstable for women volume of summary graphics for the entire dataset, as well as
 under 30 on the forecast date, with negative predicted rates at code and data for reproducing all results, on our project website
 some ages and very large differences in the fitted schedules at http://cohort-fertility.schmert.net.
 across adjacent cohorts. After confirming their observations in One important feature of our model is the way in which priors
 the historical data, we opted to exclude a shape-only model as for the shape of cohort schedules constrain the projected time
 a serious alternative. The second reported model in Table 4 is a series of age-specific rates. Linear time series extrapolations
 forecast produced by fitting independent ARIMA( 1,1,0) models that would produce implausibly shaped cohort schedules have
 to the time series of available rates at each age. low prior probability, so effectively the forecast must compro

 Coverage in a Bayesian model with only time series priors mise between observed rate levels and trends in the period just
 (Alternative 1) is notably worse than in the full model that in- before the forecast, and regularly shaped fertility schedules for
 eludes shape penalties for cohort schedules. There is clearly cohorts. As a result, projected trends in age-specific rates can
 considerable value added from the inclusion of shape priors sometime deviate substantially from freeze-rate or freeze-slope
 that prioritize time trends that lead to more plausible shapes extrapolations.
 in the cohort dimension. A simple ARIMA model (Alternative Figure 5 shows an example, for Czech women at ages 25, 30,
 2) produces CFR confidence intervals that are too narrow for and 35. The solid points in the three time series correspond to
 women who are younger than 35 on the forecast date. This may horizontal slices across the surface in Figure 1, and illustrate
 occur because positive covariances in fertility rates at similar dramatic changes in fertility timing. Prior information suggests

 that a combination of continued decline at age 25 with continued

 increases at ages 30 and 35 is very unlikely, however, because
 Table 4. Coverage of three alternative simulated 1985 forecasts those changes would imply highly implausible shapes for the

 = schedules of still-incomplete cohorts. In fact, the maximum a
 Percent of CFR Observations* in 90% probability interval posteriori compromise between cohort shapes and trends for fu

 ture Czech rates predicts fairly stable rates at ages 25, a reversal
 of recent increases at age 30, and less-than-linear increase in the
 rate at age 35.

 If extrapolated linearly, Czech fertility for the 1995 cohort at

 age 30 would reach levels near the 90th percentile of all rates
 ever observed at that age, while rates at age 25 for that cohort
 would be below the 1 st percentile. Although our improper priors

 do not penalize a high level at age 30 or a low level at age 25
 per se, they do say that combination is very unlikely, especially
 together with historically moderate rates at age 35. In short, a
 priori knowledge about relative fertility at different ages within

 cohorts implies, in this case, strong constraints on time patterns
 of age-specific rates across cohorts.

 Alternative

 Forecast  Alternative  model

 Age at  model Bayes  model 1 Bayes  2 ARIMA

 forecast  (shape + time)  (time only)  (1,1,0)

 20  85  62  54

 25  81  50  69

 30  94  56  75

 35  100  94  81

 40  100  100  100

 ALL  92  73  77

 Target  90  90  90

 *See notes for Table 3.

 Table 4. Coverage of three alternative simulated 1985 forecasts

 Percent of CFR Observations* in 90% probability interval

 Alternative

 Forecast  Alternative  model

 Age at  model Bayes  model 1 Bayes  2 ARIMA

 forecast  (shape + time)  (time only)  (1,1,0)

 20  85  62  54

 25  81  50  69

 30  94  56  75

 35  100  94  81

 40  100  100  100

 ALL  92  73  77

 Target  90  90  90

 *See notes for Table 3.
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 Age 25 Age 30 Age 35
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 Figure 5. Czech fertility forecasts at ages 25, 30, and 35. Light and dark bands are 90% and 50% posterior probability intervals, respectively.
 Dots are HFD estimates, dark horizontal lines are freeze-rate forecasts using the last observed age-specific rate, dashed lines are freeze-slope
 forecasts based on last five observed rates.

 We have a special interest in completed cohort fertility. For Czech Republic (although the decline appears likely to stop),
 cohort c the posterior distribution of completed fertility is and almost certain not to occur in Singapore.

 Table 5 presents a more systematic evaluation, showing for
 CFR( = \'QC — 1 Ό,-θ ~ lV(l'Gc/xPost, TGcEpostG'cl) (19) each country the posterior mean of CFR|960, and posterior means

 of the forecast differences between CFR for pairs of cohorts born

 from which one can calculate the MAP estimator and posterior 10 years apart. Values in the last three columns are positive if the
 probability intervals. More plausible patterns in cohort sched- later-born cohort is forecast to have higher completed fertility,
 ules and time series should translate into more plausible trends Emphasized cells have greater than 90% posterior probability
 for completed cohort fertility. of being positive (bold) or negative (italic).

 Figure 6 illustrates 4 of the 55 CFR forecast series—for the There are some unique country trajectories in Table 5. Most
 USA, Netherlands, Czech Republic, and Singapore. The very notably, Denmark and the United States are the only countries in
 narrow posterior probability intervals show that it is easy to which women born in 1970 are likely to have more children on
 forecast precisely the completed fertility for women who are average than women born in 1960. The opposite holds in every
 already 30 and older, but much harder for younger women, other country in our dataset. Note that these 1960-1970 changes
 Probability intervals for cohort CFR are extremely narrow for are virtually certain, because women born in 1970 were already
 the cohorts with nearly complete fertility histories at the forecast 40 in 2010, so that their final fertility levels can be forecast very
 date: biology makes it certain that cohorts of women in their precisely.
 late 30s and early 40s are already very close to their average The most notable feature of Table 5 is the high probability
 completed family sizes. of positive CFR change between the 1970 and 1980 cohorts in

 Posterior uncertainty about the completed fertility of the later- many countries. Our forecasts suggest that it is highly likely that
 born cohorts is small enough, however, to allow some important in the near future, as women born in the 1970s reach their 45th
 qualitative predictions about the likely fertility levels of women birthdays, most countries will observe slight rebounds in corn
 born in the 1980s in our sample of countries. A Bayesian ap- pleted fertility. Very few are likely to see continued decreases,
 proach allows us to make probabilistic statements about our Flowever, taken as a whole the forecasts suggest that the decline
 main research questions: After steady declines in many coun- in family sizes will probably stop, or even reverse itself, in many
 tries, is cohort fertility likely to rebound or increase? The fore- of the world's rich countries.
 casts in Figure 6 provide visual answers: future increases are The general pattern does not apply everywhere, of course,
 almost certain in the United States (where completed CFRs are CFR forecasts show continued decreases across cohorts born
 already rising), probable in the Netherlands, improbable in the in the 1970s in several European countries (Portugal, Hungary,
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 Figure 6. Posterior distributions of completed fertility—USA, Netherlands, Czech Republic, and Singapore—conditional on rate estimates
 available in 2010. Light and dark bands are 90% and 50% posterior probability intervals, respectively. Dots are posterior estimates for cohorts
 with complete fertility histories through age 44.

 and Slovakia), in Asia (Singapore and Korea), and in Brazil graphic forecasting methods is that we can quantify the uncer
 (which is a special case because CFR is still falling due to tainty about these speculative results,
 rapid economic progress and a classical transition from high to

 near-replacement fertility levels). g DISCUSSION
 Forecast uncertainty is much higher across the cohorts born in

 the 1980s, for whom we have shorter histories with little data on Over the last decade period fertility rates have risen in many
 whether or not women are postponing childbearing. Although developed countries, in part due to a decelerating shift of births to
 none of the 1970-1980 changes are significantly different from older maternal ages. The impact of these changes on cohort fer
 zero using the 90% probability threshold in Table 5, there are tility is unclear, because the cohorts responsible for most births
 several countries (Sweden, Bulgaria, Russia) in which there is a during this time of recent increase are still 10 to 20 years from
 fairly high posterior probability of sustained increase in average completing their childbearing. To know if cohorts who have
 family sizes as women born in the 1980s "cross the finish line" postponed childbearing will ultimately have fewer children, one
 on their 45th birthdays. Similarly, continued decreases are fairly needs to forecast, but forecasting fertility is notoriously difficult
 likely over the 1980s cohorts for Singapore, Portugal, Korea, (Booth 2006).
 Hungary, Estonia, Romania, and Brazil. We have developed new Bayesian forecasting methods for

 As the widening probability intervals in Figure 6 and the in- completed cohort fertility, and applied them to the countries
 creasing posterior standard deviations in Table 5 make clear, in the Human Fertility Database and to a number of additional
 forecasts become far more speculative as we move to later-born countries. Past efforts to forecast completed cohort fertility have
 cohorts on whom we currently have shorter fertility histories. A typically relied exclusively on time trends, or on parametric
 great advantage of Bayesian modeling over many other demo- models for rate schedules. We combine these two approaches,
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 Table 5. Posterior means of CFR for women born in 1960, and for CFR changes between cohorts (standard deviations of changes in
 parentheses)

 Expected CFR increase between birth cohorts

 Country  CFR|9M)  1960-1970  1970-1980  1980-1990

 Germany  1.66 (0.002)  -0.15 (0.00)  +0.12 (0.04)  -0.07 (0.17)
 Italy  1.69 (0.002)  -0.21 (0.00)  +0.01 (0.05)  +0.02(0.18)
 Austria  1.70 (0.005)  -0.07 (0.01)  -0.02 (0.06)  -0.08 (0.20)
 Switzerland  1.77 (0.006)  -0.12(0.01)  +0.02 (0.05)  -0.04(0.18)
 Canada  1.83 (0.003)  -0.03(0.01)  +0.15 (0.07)  +0.01 (0.21)
 Japan  1.84 (0.002)  -0.36 (0.00)  +0.06 (0.05)  -0.01 (0.18)
 Russia  1.85(0.001)  -0.24 (0.00)  +0.09 (0.05)  +0.08 (0.18)
 Netherlands  1.86 (0.004)  -0.10(0.01)  +0.31 (0.05)  +0.06 (0.18)
 Belgium  1.87 (0.005)  -0.05(0.01)  +0.23 (0.05)  -0.02(0.18)
 Scotland  1.87 (0.007)  -0.11 (0.01)  +0.17 (0.05)  +0.04(0.18)
 Denmark  1.88 (0.007)  +0.10 (0.01)  +0.18 (0.04)  -0.03 (0.17)
 Singapore  1.88 (0.008)  -0.29 (0.01)  -0.75(0.05)  -0.17 (0.18)
 Lithuania  1.91 (0.008)  -0.16(0.01)  +0.20 (0.05)  0.00(0.18)
 Portugal  1.92 (0.005)  -0.24 (0.01)  -0.79(0.05)  -0.11 (0.18)
 Bulgaria  1.95 (0.006)  -0.27(0.01)  +0.17 (0.05)  +0.12(0.18)
 Finland  1.96 (0.007)  -0.07 (0.01)  +0.12 (0.05)  +0.05 (0.18)
 Greece  1.96 (0.005)  -0.34 (0.01)  -0.05 (0.04)  -0.04(0.17)
 England & Wales  1.97 (0.002)  -0.06 (0.00)  +0.21 (0.05)  +0.05 (0.18)
 USA  2.01 (0.001)  +0.12 (0.01)  +0.27 (0.07)  -0.01 (0.21)
 Hungary  2.02 (0.005)  -0.16(0.01)  -0.27(0.05)  -0.14(0.18)
 Czech Republic  2.03 (0.006)  -0.14 (0.01)  -0.06 (0.05)  -0.05 (0.18)
 Sweden  2.05 (0.006)  -0.06(0.01)  +0.15 (0.04)  +0.13(0.17)
 Estonia  2.06(0.013)  -0.18(0.02)  0.00 (0.05)  -0.18(0.18)
 Korea  2.08 (0.002)  -0.33 (0.00)  -0.07(0.04)  -0.07 (0.17)
 France  2.11 (0.002)  -0.11 (0.00)  +0.17 (0.05)  -0.04(0.18)
 Romania  2.16 (0.004)  -0.54(0.01)  +0.05 (0.05)  -0.08 (0.18)
 Australia  2.17(0.004)  -0.14 (0.01)  +0.07 (0.05)  -0.04(0.18)
 Slovakia  2.17(0.007)  -0.24 (0.01)  -0.21 (0.05)  +0.03 (0.18)
 New Zealand  2.37 (0.009)  -0.19(0.01)  +0.13 (0.04)  +0.07(0.17)
 Northern Ireland  2.42 (0.014)  -0.29(0.02)  +0.23 (0.05)  -0.06 (0.18)
 Iceland  2.45 (0.034)  -0.13(0.04)  +0.12 (0.06)  -0.04(0.18)
 Brazil  2.86 (0.002)  -0.48 (0.00)  -0.13 (0.04)  -0.10(0.17)

 NOTE: Formatted cells have >90% probability of being negative (italics) or positive (bold). Countries are sorted in ascending order of CFR1960.

 borrowing strength from recent time trends and also from his- CFR1990-CFR1980 in the third column of Table 5 would be ap
 torical patterns in cohort age profiles. Our forecasts suggest that proximately three to four times as wide as those for the CFR1980
 cohort fertility is likely to stabilize or even increase slightly in CFR1970 difference in the second column,
 several countries. Among women born in the 1970s and early Quantifying uncertainty also shows that one can predict the
 1980s, current rate trends suggest historically plausible age pat- final fertility of older cohorts very precisely. This occurs not only
 terns of fertility that would lead to slightly larger average family because completing the fertility of older women involves a short
 sizes for the women born later. The pattern appearing recently forecast period, but also because their future fertility paths are
 in several Scandinavian countries (Andersson et al. 2009) may very well known a priori. The very narrow probability intervals
 be spreading elsewhere. shown in Figure 6 for cohorts born as recently as 1980 indicate

 Our method not only provides forecasts, but also quantifies that demographers already know quite a lot about the average
 uncertainty. From the column labeled "1970-80" in Table 5, for completed fertility of women who are today in their 30s.
 example, we see that for women born in the 1970s, downward Our methods are quite general. The same approach could
 trends in cohort fertility appear to be slowing or reversing in be applied, with only minor modifications, to many demo
 many countries. The youngest of these women are not quite 30 graphic analyses. These include forecasting childlessness and
 at our forecast horizon, but posterior probabilities show that we parity-specific fertility, and forecasts of first marriage and
 know enough to predict with high confidence that their com- never-marrying. Beyond demography, the technique of SVD
 pleted fertility will be greater than that of women born 10 years decomposition with penalized projection residuals is adaptable
 earlier. For women born in the 1980s, the oldest of whom were across many domains. The idea of using simultaneous penalties
 in their late 20s at the forecast horizon, forecasts become much in overlapping dimensions is similarly applicable to many
 more uncertain and the posterior distribution tells us so: from problems. Quadratic penalties and multivariate normality could
 standard deviations one can see that probability intervals for be used in a variety of forecasting and other missing-data

 Table 5. Posterior means of CFR for women born in 1960, and for CFR changes between cohorts (standard deviations of changes in
 parentheses)

 Expected CFR increase between birth cohorts

 Country  CFR^eo  1960-1970  1970-1980  1980-1990

 Germany  1.66 (0.002)  -0.15 (0.00)  +0.12 (0.04)  -0.07 (0.17)
 Italy  1.69 (0.002)  -0.21 (0.00)  +0.01 (0.05)  +0.02(0.18)
 Austria  1.70 (0.005)  -0.07 (0.01)  -0.02 (0.06)  -0.08 (0.20)
 Switzerland  1.77 (0.006)  -0.12(0.01)  +0.02 (0.05)  -0.04(0.18)
 Canada  1.83 (0.003)  -0.03(0.01)  +0.15 (0.07)  +0.01 (0.21)
 Japan  1.84 (0.002)  -0.36 (0.00)  +0.06 (0.05)  -0.01 (0.18)
 Russia  1.85(0.001)  -0.24 (0.00)  +0.09 (0.05)  +0.08 (0.18)
 Netherlands  1.86 (0.004)  -0.10(0.01)  +0.31 (0.05)  +0.06 (0.18)
 Belgium  1.87 (0.005)  -0.05(0.01)  +0.23 (0.05)  -0.02(0.18)
 Scotland  1.87 (0.007)  -0.11 (0.01)  +0.17 (0.05)  +0.04(0.18)
 Denmark  1.88 (0.007)  +0.10 (0.01)  +0.18 (0.04)  -0.03 (0.17)
 Singapore  1.88 (0.008)  -0.29 (0.01)  -0.15(0.05)  -0.17 (0.18)
 Lithuania  1.91 (0.008)  -0.16(0.01)  +0.20 (0.05)  0.00(0.18)
 Portugal  1.92 (0.005)  -0.24 (0.01)  -0.19(0.05)  -0.11 (0.18)
 Bulgaria  1.95 (0.006)  -0.27(0.01)  +0.17 (0.05)  +0.12(0.18)
 Finland  1.96 (0.007)  -0.07 (0.01)  +0.12 (0.05)  +0.05 (0.18)
 Greece  1.96 (0.005)  -0.34 (0.01)  -0.05 (0.04)  -0.04(0.17)
 England & Wales  1.97 (0.002)  -0.06 (0.00)  +0.21 (0.05)  +0.05 (0.18)
 USA  2.01 (0.001)  +0.12 (0.01)  +0.27 (0.07)  -0.01 (0.21)
 Hungary  2.02 (0.005)  -0.16(0.01)  -0.27(0.05)  -0.14(0.18)
 Czech Republic  2.03 (0.006)  -0.14 (0.01)  -0.06 (0.05)  -0.05 (0.18)
 Sweden  2.05 (0.006)  -0.06(0.01)  +0.15 (0.04)  +0.13(0.17)
 Estonia  2.06(0.013)  -0.18(0.02)  0.00 (0.05)  -0.18(0.18)
 Korea  2.08 (0.002)  -0.33 (0.00)  -0.07(0.04)  -0.07 (0.17)
 France  2.11 (0.002)  -0.11 (0.00)  +0.17 (0.05)  -0.04(0.18)
 Romania  2.16 (0.004)  -0.54(0.01)  +0.05 (0.05)  -0.08 (0.18)
 Australia  2.17(0.004)  -0.14 (0.01)  +0.07 (0.05)  -0.04(0.18)
 Slovakia  2.17(0.007)  -0.24 (0.01)  -0.21 (0.05)  +0.03 (0.18)
 New Zealand  2.37 (0.009)  -0.19(0.01)  +0.13 (0.04)  +0.07(0.17)
 Northern Ireland  2.42 (0.014)  -0.29(0.02)  +0.23 (0.05)  -0.06 (0.18)
 Iceland  2.45 (0.034)  -0.13(0.04)  +0.12 (0.06)  -0.04(0.18)
 Brazil  2.86 (0.002)  -0.48 (0.00)  -0.13 (0.04)  -0.10(0.17)

 NOTE: Formatted cells have >90% probability of being negative (italics) or positive (bold). Countries are sorted in ascending order of CFR1960.
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 situations. The quadratic penalty approach is computationally Although uncertainty is inherently greater for fertility fore
 convenient, because it does not require extensive sampling from casts, statistical agencies and demographers studying cohort
 the posterior distribution. It is also relatively easy to explain trends have generally relied on deterministic projections and
 to researchers who are unfamiliar with Bayesian vocabulary, forecasts. Our hope is that developments in probabilistic fertility
 because posterior means can also be explained as penalized modeling, in combination with the public availability of high
 least-squares solutions, as ridge regressions, or even as variants quality datasets like the HFD, will increase understanding of fer
 of smoothing splines (Wood 2000). tility trends and help demographic researchers to express more

 Probabilistic forecasting methods have become standard in precisely how much we do—and don't—know about the future,
 mortality forecasting, since the introduction of Lee and Carter's

 (1992) approach combining singular value decomposition of APPENDIX
 rates by age and time with classical time series methods. Girosi As described in Girosi and King (2008), an improper prior of the
 and King (2008) and Soneji and King (2011) have recently form

 used Bayesian methods to add additional structure to mortality j
 forecasts, by using prior information on age patterns to make ln/(6») = const - -d'Kd
 forecasts demographically more coherent. Bayesian models also

 allow forecasts from sparser and lower-quality data, such as that for a rate surface over q cohorts and A ages can be understood through
 available for cause of death. eigen-decomposition of the rank-deficient matrix K. Specifically, write

 Table AI. Complete cohort fertility schedules over ages 15^14, by country

 Historical  Contemporary

 Country  η  Birth cohorts  Birth cohorts  Source  Notes

 Australia  0  None  1960-65  Statistics AustraliaA
 Austria  14  1936-49  1950-64  HFDB

 Belgium  11  1939-49  1950-65  EurostatA
 Brazil  0  None  1951-66  Limac

 Bulgaria  18  1932-49  1950-65  HFD

 Canada  44  1906-49  1950-63  HFD

 Czech Republic  15  1935-49  1950-65  HFD  Slovakia separate
 Denmark  15  1935—49  1950-66  EurostatA

 England & Wales  27  1923^49  1950-65  HFD

 Estonia  6  1944—49  1950-65  HFD

 Finland  26  1924-49  1950-65  HFD

 France  19  1931-49  1950-65  HFD

 Germany  9  1941-49  1950-66  HFD

 Germany (West)  9  1941-49  1950-66  HFD

 Germany (East)  9  1941-49  1950-66  HFD

 Great Britain  0  None  1959-65  HFD

 Greece  4  1946-49  1950-66  EurostatA

 Hungary  15  1935-49  1950-65  HFD

 Iceland  2  1948-49  1950-66  EurostatA

 Italy  13  1937—49  1950-65  EurostatA

 Japan  4  1946-49  1950-65  Kaneko/MatsukuraA
 Korea  0  None  1954-66  JunA

 Lithuania  6  1944-49  1950-65  HFD

 Luxembourg  0  None  None  EurostatA
 Netherlands  15  1935-49  1950-65  HFD

 New Zealand  3  1947-49  1950-66  Statistics NZA
 Northern Ireland  0  None  1959-65  HFD

 Portugal  25  1925-49  1950-65  HFD

 Romania  0  None  1960-65  EurostatA
 Russia  6  1944-49  1950-65  HFD

 Scotland  20 .  1930-49  1950-65  HFD

 Singapore  4  1946—49  1950-65  Statistics SingaporeA
 Slovakia  15  1935-49  1950-65  HFD  Czech Rep separate
 Slovenia  0  None  None  HFD

 Sweden  50  1900-49  1950-66  HFD  1876-99 excluded

 Switzerland  33  1917-49  1950-65  HFD

 USA  32  1918-49  1950-63  HFD

 Notes:

 (A) Detailed sources are listed in Table 1 of Myrskylä, Goldstein, and Chen (2013).
 (B) Downloaded from Human Fertility Database (http://humanfertility.org) on 2 Nov 2011.
 (C) Personal communication from Dr. Everton Lima, CEDEPLAR/UFMG.
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 that decomposition as

 Κ = UDÜ = [U, U0]

 Ί

 Ö  Ο
 •  1

 ς
 1

 0 0
 1

 ς  ο
 L

 = U,D,U'I,

 where U's columns are orthonormal eigenvectors, rank(K) = r, U0
 contains eigenvectors corresponding to the zero eigenvalues, D) is an
 r χ r diagonal matrix of positive eigenvalues, and Ui is a CA χ r matrix
 containing the eigenvectors corresponding to the positive eigenvalues.
 Adopting a new orthogonal coordinate system (y) based on the columns
 of U yields

 = [U0 U,  = U0yo + U\Yi,

 where γ ο = U'oÖ and γ ι = U'i#. In terms of the y-coordinates, a prior

 based on Κ implies

 ln/(y) = const - ^(y0U'0 + yiU'i)(UiDiU'i)(U0yb + Uiyi)

 = const - ^y,'Diyi.

 In other words, the improper prior based on Κ tells us that 0's y,
 coordinates have a normal distribution with mean zero and covariance

 matrix D,-l, while the remaining (CA-r) y0 coordinates are completely
 unrestricted.

 Under a weighted, combined prior with Κ = Σ/νν,Κ,), the jth penalty
 is

 71 j = O'KjO

 = (y0U'o + y,'U'1)KJ (Uoyo + U.y,)

 = y,'U'iK;Uiyi + terms involving yo.

 If we define a special expectation operator E* that always conditions
 on γ0 = 0, then it is possible to calculate

 E*(jij\w) = E*(yiir,KjU,yi)
 = £ * (trace [ y j'U'! Κ j U ι yi ])

 = E* (trace[U' ι Ky· U ] yi y,'])

 = trace[U'iKjU)£*(yiy,')]
 = trace[U'iKyUiDj"']
 = tracefKj-UiD^'U'i]
 = tracefKjK+],

 where K+ is the generalized (Moore-Penrose) inverse of K. The rela
 tionships between weights w and expected penalties are complex and
 nonlinear. However, this expression for E*(jTj\w) allows us to quickly
 calculate the implications of a given set of weights, and therefore to
 construct a prior distribution for which all penalties have expected
 values that match their empirical averages in historical data.

 [Received March 2012. Revised November 2013.]
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