Details of the proof in Vaccinating the oldest against Covid-19 saves both the most lives and most years of life by Goldstein, Cassidy, and Wachter

February 28, 2021

The hazard at age x is denoted by h(x) and is assumed to be positive at all ages. Let $H(x) = \int_0^x h(a)da$ denote the cumulative hazard. Because h is positive, H is a strictly increasing function. Life expectancy at age x is given by

$$e(x) = \frac{1}{e^{-H(x)}} \int_x^\infty e^{-H(y)} dy$$

where the denominator $e^{-H(x)}$ gives the proportion surviving to age x and the integral sums up years lived by survivors to ages y.

We assume that the years-of-life-saved is proportional to the product h(x)e(x), and we seek conditions guaranteeing that

$$g(x) = h(x) e(x) = h(x) e^{H(x)} \int_{x}^{\infty} e^{-H(y)} dy$$
(1)

is an increasing function.

Proposition: Suppose that the hazard h(x) is twice differentiable for all ages x and that

$$\left(\frac{d\,\log h(x)}{dx}\right)^2 > \frac{d^2\,\log h(x)}{dx^2}.$$

Then g(x) = h(x)e(x) is monotone increasing in age.

Proof: The proof proceeds in three steps. First, we find a new expression for g as a function of cumulative hazards, rather than as a function of age. We call this new function \tilde{g} . Next we use tools from analysis to show that the hypothesis of the theorem implies that \tilde{g} is monotone increasing. Lastly, we show that because \tilde{g} is monotone increasing, g must also be monotone increasing.

Because H is strictly increasing, there is a one-to-one correspondence between each age x and the cumulative hazard H at that age. This means that each value of H can be associated with a unique age x, and H is an invertible function. Let J be the inverse of H, so that J(w) is the age at which cumulative hazards have reached level w. Define new variables u and t by u = H(x) and t = H(y) - H(x) = H(y) - u, and observe that $\frac{du}{dx} = h(x)$. Let $\lambda = h \circ J$ be the composition of the hazard h with the inverse function J. Then $\lambda(w)$ tells us the hazard experienced at the age when cumulative hazards are equal to w. In particular, $\lambda(u) = h(x)$ and $\lambda(u + t) = h(y)$.

Now define a new function \tilde{g} by $\tilde{g}(u) = g(x)$. The factor $h(x)e^{H(x)}$ appearing before the integral in equation (1) can be rewritten as $\lambda(u)e^u$. Using $\frac{d}{dy}H(y) = h(y)$, we change the variable of integration in equation (1) from y to t, and then by absorbing $\lambda(u)e^u$ into the integral we find that the value $\tilde{g}(u)$ corresponding to g(x) is

$$\tilde{g}(u) = \int_0^\infty \frac{\lambda(u) \, dt}{\lambda(u+t) \, e^t}.\tag{2}$$

To establish that \tilde{g} is monotone increasing, we show that $\tilde{g}(u+\delta) > \tilde{g}(u)$ for any $\delta > 0$. Observe that

$$\tilde{g}(u+\delta) = \int_0^\infty \frac{\lambda(u+\delta)\,dt}{\lambda(u+\delta+t)\,e^t} = \int_0^\infty \left(\frac{\lambda(u+\delta)\lambda(u+t)}{\lambda(u)\,\lambda(u+t+\delta)}\right) \frac{\lambda(u)\,dt}{\lambda(u+t)\,e^t}.$$
 (3)

Write Φ for the fraction in brackets inside the last integral of equation (3), and notice that the integral in equation (3) differs from the integral in equation (2) by the factor Φ . We will show that $\Phi > 1$, so that $\tilde{g}(u + \delta) > \tilde{g}(u)$.

Define ages x_1, x_2, x_3 , and x_4 by $x_1 = J(u), x_2 = J(u+\delta), x_3 = J(u+t)$, and $x_4 = J(u+t+\delta)$, and put $f(x) = \log h(x)$. From the definition of λ in terms of the inverse function J, we can write $\log \lambda(u) = \log h(J(u)) =$ $\log h(x_1) = f(x_1)$, and similarly $\log \lambda(u+\delta) = f(x_2)$, $\log \lambda(u+t) = f(x_3)$, and $\log \lambda(u+t+\delta) = f(x_4)$. Thus

$$\log \Phi = (f(x_2) - f(x_1)) - (f(x_4) - f(x_3)).$$

For small δ we have

$$\delta = \int_{x_1}^{x_2} h(y) \, dy \, \approx \, (x_2 - x_1) h(x_1)$$

and similarly $\delta \approx (x_4 - x_3)h(x_3)$.

By first order Taylor expansions we approximate $f(x_2) - f(x_1)$ with $(x_2 - x_1)\frac{df}{dx}|_{x_1}$, and similarly $f(x_4) - f(x_3)$ with $(x_4 - x_3)\frac{df}{dx}|_{x_3}$. Letting $F(x) = -\frac{1}{h(x)}\frac{df(x)}{dx}$, we then have

$$\log \Phi = (f(x_2) - f(x_1)) - (f(x_4) - f(x_3))$$

$$\approx (x_2 - x_1) \frac{df}{dx}|_{x_1} - (x_4 - x_3) \frac{df}{dx}|_{x_3}$$

$$= \frac{\delta}{h(x_1)} \frac{df}{dx}|_{x_1} - \frac{\delta}{h_{x-3}} \frac{df}{dx}|_{x_3}$$

$$= \delta(F(x_3) - F(x_1)).$$

It then follows from the fundamental theorem of calculus that

$$\log \Phi \approx \delta \int_{x_1}^{x_3} \frac{d}{dx} F(x) dx$$
$$= \delta \int_{x_1}^{x_3} \frac{-d}{dx} \left(e^{-f(x)} \frac{df}{dx} \right) dx.$$

The integrand $\frac{-d}{dx} \left(e^{-f(x)} \frac{df}{dx} \right)$ is equal to $e^{-f} \left(\left(\frac{df}{dx} \right)^2 - \frac{d^2f}{dx^2} \right)$. By assumption, $\left(\frac{df}{dx} \right)^2 - \frac{d^2f}{dx^2}$ is greater than zero, and thus $\log \Phi$ is positive and $\tilde{g}(u+\delta) > \tilde{g}(u)$. This inequality holds for all u and small $\delta > 0$, and so \tilde{g} is an increasing function.

Lastly, recall that $\frac{du}{dx} = h(x)$ is assumed to be positive. Because \tilde{g} is an increasing function, $\frac{d\tilde{g}}{du} > 0$. Since $\tilde{g}(u) = g(x)$, we have

$$\frac{d}{dx}g(x) = \frac{d}{dx}\tilde{g}(u) = \frac{d\tilde{g}}{du}\frac{du}{dx} = \frac{d\tilde{g}}{du}h(x) > 0,$$

and hence g is an increasing function. Q.E.D.