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The hazard at age x is denoted by h(x) and is assumed to be positive at
all ages. Let H(z) = [ h(a)da denote the cumulative hazard. Because h is
positive, H is a strictly increasing function. Life expectancy at age x is given

by
1 —H(y)
e(zr) = H®) /x e dy

where the denominator e=#®) gives the proportion surviving to age = and
the integral sums up years lived by survivors to ages vy .

We assume that the years-of-life-saved is proportional to the product
h(z)e(z), and we seek conditions guaranteeing that

g(z) = h(z) e(x) = h(x)e"® / W gy (1)

is an increasing function.

Proposition: Suppose that the hazard h(z) is twice differentiable for all
ages r and that
dlogh(z)\*>  d logh(x)
< dx ) T T

Then g(x) = h(x)e(z) is monotone increasing in age.

Proof: The proof proceeds in three steps. First, we find a new expression
for g as a function of cumulative hazards, rather than as a function of age.
We call this new function g. Next we use tools from analysis to show that
the hypothesis of the theorem implies that g is monotone increasing. Lastly,
we show that because g is monotone increasing, g must also be monotone
increasing.

Because H is strictly increasing, there is a one-to-one correspondence
between each age x and the cumulative hazard H at that age. This means



that each value of H can be associated with a unique age z, and H is an
invertible function. Let J be the inverse of H, so that J(w) is the age at
which cumulative hazards have reached level w. Define new variables u and ¢
by u= H(z) and ¢t = H(y) — H(z) = H(y) — u, and observe that 2 = h(z).
Let A = h o J be the composition of the hazard h with the inverse function
J. Then A(w) tells us the hazard experienced at the age when cumulative
hazards are equal to w. In particular, A(u) = h(z) and A(u +t) = h(y).

Now define a new function § by §(u) = g(x). The factor h(x)ef®) ap-
pearing before the integral in equation (1) can be rewritten as A\(u)e". Using
d%H(y) = h(y), we change the variable of integration in equation (1) from y
to ¢, and then by absorbing A(u)e" into the integral we find that the value
g(u) corresponding to g(z) is

) = [ e )

(u+t)et

To establish that § is monotone increasing, we show that g(u+6) > g(u)
for any 6 > 0. Observe that

. T MuA)dt [ AMuA )M u+t)\  A(u)dt
9(“”)_/0 Muto+t)et _/O (A(U)A(u+t+5)) Norne &

Write @ for the fraction in brackets inside the last integral of equation (3), and
notice that the integral in equation (3) differs from the integral in equation
(2) by the factor ®. We will show that & > 1, so that g(u + ) > g(u).

Define ages z1, xq, x3, and x4 by x1 = J(u), 22 = J(u+9), x3 = J(u+1),
and x4 = J(u+t+9), and put f(z) = logh(z). From the definition of A
in terms of the inverse function J, we can write log A(u) = logh(J(u)) =
log h(x1) = f(x1), and similarly log A(u 4+ ) = f(x2), log A(u +t) = f(x3),
and log A(u +t 4+ d) = f(z4). Thus

log® = (f(x2) — f(21)) — (f(x4) — f(x3)).
For small  we have

0= /xQ h(y)dy ~ (v2 — x1)h(21)

x1



and similarly § &~ (x4 — x3)h(x3).

By first order Taylor expansions we approximate f(x9)— f(x1) with (zo—
)d |z, and similarly f(x4) — f(z3) with (x4 — $3)%|$3. Letting F(x) =

1 df(z)

@) —dr o We then have

log® = (f(x2) = f(21)) — (f(24) — f(23))

d d
S (o= ) el — (01— 1) e
_ b
T () dz'™t T hy_s dz'™

= 0(F(z3) = F(21)).

It then follows from the fundamental theorem of calculus that

5/ ddF( ) dz

1
s _d df
_ _ 2 ) Y
6/:51 o (e dx) dz.

The integrand 72 (/@) d—’;) is equal to e~/ ((ﬁ) Z;) By assumption,

log ®

Q

(%) d f is greater than zero, and thus log ® is positive and g(u+0) > g(u).

This 1nequahty holds for all w and small § > 0, and so § is an increasing
function.

Lastly, recall that % = h(z) is assumed to be positive. Because g is an
increasing function, % > 0. Since §(u) = g(z), we have

d (2) d . (1) = dg du  dg

_ xr) = — —_ =

dz? dz?" T Qude T du

and hence ¢ is an increasing function. Q.E.D.



